You are viewing docs on Elastic's new documentation system, currently in technical preview. For all other Elastic docs, visit elastic.co/guide.

Azure OpenAI

Azure OpenAI Logs and Metrics

Version
0.2.0 (View all)
Compatible Kibana version(s)
8.13.0 or higher
Supported Serverless project types

Security
Observability
Subscription level
Basic
Level of support
Elastic

The Azure OpenAI service provides flexibility to build your own copilot and AI applications. The Azure OpenAI integration collects and aggregates OpenAI related logs, such as audit and request-response logs and metrics from Microsoft.CognitiveServices type resources for analysis, visualization, and alerting. Additional Azure API calls will be executed to retrieve information regarding the resources targeted by the user.

Data streams

Logs

The Azure OpenAI logs data stream captures the audit events and the request-response events.

Supported Azure log categories:

Data StreamLog Category
logs
audit
logs
requestresponse

Requirements and setup

Refer to the Azure Logs page for more information about setting up and using this integration.

Settings

eventhub : string It is a fully managed, real-time data ingestion service. Elastic recommends using only letters, numbers, and the hyphen (-) character for Event Hub names to maximize compatibility. You can use existing Event Hubs having underscores (_) in the Event Hub name; in this case, the integration will replace underscores with hyphens (-) when it uses the Event Hub name to create dependent Azure resources behind the scenes (e.g., the storage account container to store Event Hub consumer offsets). Elastic also recommends using a separate event hub for each log type as the field mappings of each log type differ. Default value: insights-operational-logs.

consumer_group : string The publish/subscribe mechanism of Event Hubs is enabled through consumer groups. A consumer group is a view (state, position, or offset) of an entire event hub. Consumer groups enable multiple consuming applications to each have a separate view of the event stream, and to read the stream independently at their own pace and with their own offsets. Default value: $Default

connection_string : string The connection string required to communicate with Event Hubs, steps here.

A Blob Storage account is required in order to store/retrieve/update the offset or state of the eventhub messages. This means that after stopping the filebeat azure module it can start back up at the spot that it stopped processing messages.

storage_account : string The name of the storage account the state/offsets will be stored and updated.

storage_account_key : string The storage account key, this key will be used to authorize access to data in your storage account.

storage_account_container : string The storage account container where the integration stores the checkpoint data for the consumer group. It is an advanced option to use with extreme care. You MUST use a dedicated storage account container for each Azure log type (activity, sign-in, audit logs, and others). DO NOT REUSE the same container name for more than one Azure log type. See Container Names for details on naming rules from Microsoft. The integration generates a default container name if not specified.

resource_manager_endpoint : string Optional, by default we are using the azure public environment, to override, users can provide a specific resource manager endpoint in order to use a different azure environment.

Resource manager endpoints:

# Azure ChinaCloud
https://management.chinacloudapi.cn/

# Azure GermanCloud
https://management.microsoftazure.de/

# Azure PublicCloud 
https://management.azure.com/

# Azure USGovernmentCloud
https://management.usgovcloudapi.net/

An example event for logs looks as following:

{
    "@timestamp": "2024-04-08T12:23:02.435Z",
    "azure": {
        "open_ai": {
            "caller_ip_address": "81.2.69.144",
            "category": "RequestResponse",
            "correlation_id": "9d3a6e98-fc11-48d0-82cf-4de065c1a1f8",
            "event": "ShoeboxCallResult",
            "location": "eastus",
            "operation_name": "Create_Thread",
            "properties": {
                "api_name": "Azure OpenAI API version 2024-02-15-preview",
                "object_id": "",
                "request_length": 2,
                "request_time": 638481757794854611,
                "response_length": 113,
                "response_time": 638481757795877942
            },
            "result_signature": "200",
            "tenant": "eastus"
        },
        "resource": {
            "group": "obs-openai-service-rs",
            "id": "/subscriptions/12cabcb4-86e8-404f-a3d2-1dc9982f45ca/resourcegroups/obs-openai-service-rs/providers/microsoft.cognitiveservices/accounts/obs-openai-test-01",
            "name": "obs-openai-test-01",
            "provider": "microsoft.cognitiveservices/accounts"
        }
    },
    "cloud": {
        "provider": "azure"
    },
    "event": {
        "duration": 102000000,
        "original": "{\"Tenant\":\"eastus\",\"callerIpAddress\":\"81.2.69.144\",\"category\":\"RequestResponse\",\"correlationId\":\"9d3a6e98-fc11-48d0-82cf-4de065c1a1f8\",\"durationMs\":102,\"event\":\"ShoeboxCallResult\",\"location\":\"eastus\",\"operationName\":\"Create_Thread\",\"properties\":\"{\\\"apiName\\\":\\\"Azure OpenAI API version 2024-02-15-preview\\\",\\\"requestTime\\\":638481757794854611,\\\"requestLength\\\":2,\\\"responseTime\\\":638481757795877942,\\\"responseLength\\\":113,\\\"objectId\\\":\\\"\\\"}\",\"resourceId\":\"/SUBSCRIPTIONS/12CABCB4-86E8-404F-A3D2-1DC9982F45CA/RESOURCEGROUPS/OBS-OPENAI-SERVICE-RS/PROVIDERS/MICROSOFT.COGNITIVESERVICES/ACCOUNTS/OBS-OPENAI-TEST-01\",\"resultSignature\":\"200\",\"time\":\"2024-04-08T12:23:02.4350000Z\"}"
    },
    "tags": [
        "preserve_original_event"
    ]
}

Exported fields

FieldDescriptionType
@timestamp
Event timestamp.
date
azure.open_ai.asset_identity
The asset identity key.
keyword
azure.open_ai.caller_ip_address
The client IP address. (x - last octet masked).
keyword
azure.open_ai.category
The log category name.
keyword
azure.open_ai.correlation_id
The correlation id as key.
keyword
azure.open_ai.event
The event type of the service request.
keyword
azure.open_ai.location
The location.
keyword
azure.open_ai.operation_name
The log action performed.
keyword
azure.open_ai.properties.api_name
The API name of the request.
keyword
azure.open_ai.properties.model_deployment_name
The deployed model name.
keyword
azure.open_ai.properties.model_name
The OpenAI model.
keyword
azure.open_ai.properties.model_version
The OpenAI model version.
keyword
azure.open_ai.properties.object_id
The object id of the request.
keyword
azure.open_ai.properties.request_length
Length of the request.
double
azure.open_ai.properties.request_time
Request time taken.
long
azure.open_ai.properties.response_length
Length of the response.
double
azure.open_ai.properties.response_time
Response time taken.
long
azure.open_ai.properties.stream_type
The stream type of the request.
keyword
azure.open_ai.result_signature
The response status.
keyword
azure.open_ai.tenant
The tenant location.
keyword
azure.resource.authorization_rule
Authorization rule
keyword
azure.resource.group
The resource group
keyword
azure.resource.id
Resource ID
keyword
azure.resource.name
The name of the resource
keyword
azure.resource.namespace
Resource type/namespace
keyword
azure.resource.provider
The resource group
keyword
azure.resource.type
The type of the resource
keyword
azure.subscription_id
The subscription ID
keyword
data_stream.dataset
Data stream dataset.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword

Metrics

Requirements

Before you start, check the Authentication and costs section.

Setup

Follow these step-by-step instructions on how to set up an Azure metrics integration.

Data stream specific configuration notes

Period:: (string) Reporting interval. Metrics will have a timegrain of 5 minutes, so the Period configuration option for azure_openai should have a value of 300s or multiple of 300sfor relevant results.

Resource IDs:: ([]string) The fully qualified ID's of the resource, including the resource name and resource type. Has the format /subscriptions/{guid}/resourceGroups/{resource-group-name}/providers/{resource-provider-namespace}/{resource-type}/{resource-name}. Should return a list of resources.

Resource Groups:: ([]string) This option will return all Azure OpenAI services inside the resource group.

If no resource filter is specified, then all Azure OpenAI services inside the entire subscription will be considered.

The primary aggregation value will be retrieved for all the metrics contained in the namespaces. The aggregation options are avg, sum, min, max, total, count.

An example event for metrics looks as following:

{
    "cloud": {
        "provider": "azure",
        "region": "eastus"
    },
    "agent": {
        "name": "docker-fleet-agent",
        "id": "0c09f097-dc30-44c5-b3e7-083f1a14873c",
        "ephemeral_id": "dcff0e53-fadb-4e97-86a2-1e611f12fc34",
        "type": "metricbeat",
        "version": "8.13.0"
    },
    "@timestamp": "2024-04-11T01:46:00.000Z",
    "ecs": {
        "version": "8.0.0"
    },
    "data_stream": {
        "namespace": "default",
        "type": "metrics",
        "dataset": "azure.open_ai"
    },
    "service": {
        "type": "azure"
    },
    "elastic_agent": {
        "id": "0c09f097-dc30-44c5-b3e7-083f1a14873c",
        "version": "8.13.0",
        "snapshot": false
    },
    "metricset": {
        "period": 300000,
        "name": "monitor"
    },
    "event": {
        "duration": 2216811793,
        "agent_id_status": "verified",
        "ingested": "2024-04-11T01:52:30Z",
        "module": "azure",
        "dataset": "azure.open_ai"
    },
    "azure": {
        "subscription_id": "12cabcb4-86e8-404f-a3d2-1dc9982f45ca",
        "timegrain": "PT1M",
        "resource": {
            "name": "obs-openai-test-01",
            "id": "/subscriptions/12cabcb4-86e8-404f-a3d2-1dc9982f45ca/resourceGroups/obs-openai-service-rs/providers/Microsoft.CognitiveServices/accounts/obs-openai-test-01",
            "type": "Microsoft.CognitiveServices/accounts",
            "group": "obs-openai-service-rs"
        },
        "namespace": "Microsoft.CognitiveServices/accounts",
        "open_ai": {
            "requests": {
                "total": 1
            }
        },
        "dimensions": {
            "operation_name": "ChatCompletions_Create",
            "model_version": "0301",
            "status_code": "200",
            "model_name": "gpt-35-turbo",
            "api_name": "Azure OpenAI API version 2024-04-01-preview",
            "stream_type": "Streaming",
            "model_deployment_name": "gpt-chat-pilot",
            "region": "East US"
        }
    }
}

Exported fields

FieldDescriptionTypeUnitMetric Type
@timestamp
Event timestamp.
date
azure.application_id
The application ID
keyword
azure.dimensions.*
Azure metric dimensions.
object
azure.dimensions.fingerprint
Autogenerated ID representing the fingerprint of the azure.dimensions object
keyword
azure.namespace
The namespace selected
keyword
azure.open_ai.active_tokens.total
Total tokens minus cached tokens over a period of time.
float
gauge
azure.open_ai.fine_tuned_training_hours.total
Number of Training Hours Processed on an OpenAI FineTuned Model.
float
counter
azure.open_ai.generated_tokens.total
Number of tokens generated (output) from an OpenAI model.
float
counter
azure.open_ai.processed_prompt_tokens.total
Number of prompt tokens processed (input) on an OpenAI model.
float
counter
azure.open_ai.provisioned_managed_utilization_v2.avg
Utilization % for a provisoned-managed deployment, calculated as (PTUs consumed / PTUs deployed) x 100. When utilization is greater than or equal to 100%, calls are throttled and error code 429 returned.
float
percent
gauge
azure.open_ai.raiharmful_requests.total
ContentSafety - Risks&Safety. Number of calls made to Azure OpenAI API and detected as harmful(both block model and annotate mode) by content filter applied over a period of time.
float
counter
azure.open_ai.rairejected_requests.total
ContentSafety - Risks&Safety. Number of calls made to Azure OpenAI API and rejected by content filter applied over a period of time.
float
counter
azure.open_ai.raitotal_requests.total
ContentSafety - Risks&Safety. Number of calls made to Azure OpenAI API and detected by content filter applied over a period of time.
float
counter
azure.open_ai.requests.total
Number of calls made to the Azure OpenAI API over a period of time.
float
counter
azure.open_ai.token_transaction.total
Number of inference tokens processed on an OpenAI model.
float
counter
azure.resource.group
The resource group
keyword
azure.resource.id
The id of the resource
keyword
azure.resource.name
The name of the resource
keyword
azure.resource.tags.*
Azure resource tags.
object
azure.resource.type
The type of the resource
keyword
azure.subscription_id
The subscription ID
keyword
azure.timegrain
The Azure metric timegrain
keyword
data_stream.dataset
Data stream dataset name.
constant_keyword
data_stream.namespace
Data stream namespace.
constant_keyword
data_stream.type
Data stream type.
constant_keyword
dataset.name
Dataset name.
constant_keyword
dataset.namespace
Dataset namespace.
constant_keyword
dataset.type
Dataset type.
constant_keyword

Changelog

VersionDetailsKibana version(s)

0.2.0

Enhancement View pull request
Enhance Logs Dashboard.

0.1.0

Enhancement View pull request
Add response log samples with model deployment properties.

0.0.2

Bug fix View pull request
Update fields metric type to counter.

0.0.1

Enhancement View pull request
Initial release of Azure OpenAI Integration.

On this page